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ABSTRACT

Alternating-time temporal logic (atl) is one of the most
influential logics for reasoning about agents’ abilities. Con-
structive Strategic Logic (csl) is a variant of atl for imper-
fect information games that allows to express strategic and
epistemic properties of coalitions under uncertainty. In this
paper, we propose a logic that extends csl with a notion of
plausibility that can be used for reasoning about the out-
come of rational behavior (in the game-theoretical sense).
Moreover, we show how a particular notion of beliefs can
be defined on top of plausibility. The resulting logic, cslp,
turns out to be very expressive.

We show that beliefs satisfy axioms KD45 in the logic.
We also demonstrate how solution concepts for imperfect in-
formation games can be characterized and used in cslp and
that the model checking complexity increases only slightly
when plausibility and rational beliefs are added.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic

General Terms

Theory

Keywords

Temporal logic, imperfect information games, knowledge and
beliefs

1. INTRODUCTION
Alternating-time temporal logic (atl) [1] is one of the most

influential logics for reasoning about abilities of agents with
perfect information. The key constructs are cooperation
modalities 〈〈A〉〉 where A is a group of agents. The read-
ing of 〈〈A〉〉γ is that agents A have a collective strategy to
enforce γ. In [7] a variant of atl for imperfect information
scenarios has been proposed. The logic, called Constructive
Strategic Logic (csl), unified several attempts to incorporate
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epistemic concepts into atl, and solved various problems of
these previous attempts. However, it included only strategic
and epistemic modalities; in particular, doxastic and ratio-
nality concepts were absent.

On the other hand, another extension of atl, called atl
with Plausibility (atlp), has been proposed in [3] for rea-
soning about rational or plausible behavior.1 That logic
allowed to describe and/or impose rationality assumptions
on (a subset of) agents, and to reason about the outcome of
the play if irrational behavior was disregarded. For example,
one might assume that agents are not completely dumb and
do not play dominated strategies (in the game-theoretical
sense). Such assumptions allow to restrict the vast number
of possibilities each agent has to consider.

In this paper we present Constructive Strategic Logic with
Plausibility (cslp), a combination of csl and atlp where the
new language goes far beyond the pure union of both logics.
Firstly, the plausibility concept allows us to neatly define
the relationship between epistemic and doxastic concepts,
in a similar way to [2]. As the basic modality we introduce
weak constructive rational beliefs: CWA (common beliefs),
DWA (distributed beliefs), and EWA (mutual beliefs). The
term constructive is used in the same sense as in [3], where
it referred to an “operational” kind of knowledge that, in or-
der to “know how to play”, requires the agents to be able to
identify and execute an appropriate strategy. Like for csl,
the semantics of cslp is non-standard: formulae are inter-
preted in sets of states. For example, the intuitive reading
of M, Q |= 〈〈A〉〉γ is that agents A have a collective strat-
egy which enforces γ from each state in Q. Thanks to the
plausibility concept provided by atlp we can define knowl-
edge and rational beliefs on top of weak beliefs. We point
out that our notion of rational belief is rather specific, and
show interesting properties of knowledge, rational belief, and
plausibility. In particular, it is shown that knowledge and
belief are KD45 modalities.

We show that cslp is very expressive, and we demonstrate
how solution concepts for imperfect information games can
be characterized and used in cslp. It also turns out that,
despite the logic’s expressiveness, the model checking com-
plexity does not increase when compared to atlp, and in-
creases only slightly compared to csl when plausibility and
rational beliefs are added.

1.1 Related Work
Our idea to build beliefs on top of plausibility has been in-

1In this paper we use the terms rational and plausible inter-
changeably.
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spired by [10, 6]. In [2], we extended ctlk, a straightforward
combination of the branching-time logic ctl [4] and stan-
dard epistemic logic [5], by a notion of plausibility which in
turn was used to define a particular notion of beliefs. Plau-
sibility assumptions were defined in terms of paths in the
underlying system. Then, agent’s beliefs were given by his
knowledge if only plausible paths were considered.

Another source of inspiration is [13, 12], where the se-
mantics of ability was influenced by particular notions of
rationality. We generalized these ideas in [3]. Semantically,
a subset of strategies (behaviors) was identified as rational
in the model; a typical formula was Pl B〈〈A〉〉γ with the fol-
lowing reading: Agents A can enforce γ if agents in B act
rationally. We showed how one can use the logic to char-
acterize solution concepts (Nash equilibria, Pareto optimal
profiles etc.), and reason about the outcome of rational play.

The current paper is an attempt to integrate the notions
of time, knowledge, belief, strategic ability, rationality, and
uncertainty in a single logical framework.

2. CSL WITH PLAUSIBILITY
We start with an informal presentation of the idea. Then,

we describe the formal syntax and semantics, and we discuss
the new operators in more detail.

2.1 Agents, Beliefs, and Rational Play
In the following, let A ⊆ Agt be a team of agents where

Agt denotes the set of all agents. Formulae are interpreted
given a model M and a set of states Q. The reading of
M, Q |= 〈〈A〉〉γ is that agents A have a collective strat-
egy which enforces γ from all states in Q. PlA ϕ assumes
that agents in A play plausibly according to some rational-
ity criterion which can be set (resp. refined) by operators
(set-pl ω) (resp. (refn-pl ω)). The set of such rational
agents is denoted by Rgt. Plausibility terms ω refer to sets of
strategy profiles that implement the rationality criteria. Fi-
nally, the logic includes operators for constructive weakly ra-
tional belief (constructive weak belief /cwb in short): CWAϕ
(agents A have common cwb in ϕ); EWAϕ (agents A have
mutual cwb in ϕ); and DWAϕ (agents A have distributed
cwb in ϕ). Semantically, the cwb operators yield “epistemic
positions” of team A that serve as reference for the semantic
evaluation of strategic formulae.

Consider formula EWAPlAgt\A 〈〈A〉〉�safe (coalition A has
a constructive mutual weak belief that they can keep the sys-
tem safe forever if the opponents behave rationally) in model
M and set of states Q. Firstly, Q is extended with all states
indistinguishable from some state in Q for any agent from
A. Let us call the extended set Q′. Now, A have cwb in
PlAgt\A 〈〈A〉〉�safe iff they have a strategy that maintains
safe from all states in Q′ assuming that implausible behav-
ior for the agents in Agt \ A is disregarded.

Later, we will define strongly rational beliefs (resp. knowl-
edge) as a special case of cwb’s in which all agents are (resp.
no agent is) assumed to play plausibly.

2.2 Syntax
The language of Constructive Strategic Logic with Plausi-

bility (cslp) includes atomic propositions, Boolean connec-
tives, strategic formulae, operators for constructive weakly
rational beliefs, and operators that handle plausibility up-
dates. As we will see, standard/constructive strongly ratio-
nal beliefs and knowledge can be defined on top of these.

Definition 1 (LCSLP). Let Agt be a set of agents, Π
a set of propositions, and Ω a set of primitive plausibility
terms. The logic LCSLP(Agt, Π, Ω) is generated by the fol-
lowing grammar:

ϕ ::= p |¬ϕ |ϕ ∧ ϕ | 〈〈A〉〉 �ϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕ | CWAϕ |
EWAϕ | DWAϕ | PlA ϕ | (set-pl ω)ϕ | (refn-pl ω)ϕ.

The temporal operators �, �, U stand for “next”, “al-
ways”, and “until”, respectively. We use the standard def-
initions of ∨,→,↔, plus the following derived modalities:
�ϕ ≡ �U ϕ (sometime), Nowϕ ≡ ϕU ϕ (now), Waϕ ≡
CW{a}ϕ (individual cwb), CWAϕ ≡ CWA〈〈∅〉〉Nowϕ, EWAϕ ≡
EWA〈〈∅〉〉Nowϕ, DWAϕ ≡ DWA〈〈∅〉〉Nowϕ (standard weak
belief, wb), Waϕ ≡ CW{a}ϕ (individual wb), Pl ≡ PlAgt

(reasoning under the assumption that all agents behave plau-
sibly), and Ph ≡ Pl∅ (reasoning about outcome of all“phys-
ically” possible behaviors). Finally, we define operators for
constructive and standard strongly rational belief (csb) as:
Bela ≡ WaPl , CBelA ≡ CWAPl ,
EBelA ≡ EWAPl , DBelA ≡ DWAPl ,
Bela ≡ PhWaPl , CBelA ≡ PhCWAPl ,
EBelA ≡ PhEWAPl , DBelA ≡ PhDWAPl ,

and the constructive and standard knowledge operators as:
Ka ≡ PhWa, CA ≡ PhCWA, EA ≡ PhEWA,
DA ≡ PhDWA, Ka ≡ PhWa, CA ≡ PhCWA,
EA ≡ PhEWA, DA ≡ PhDWA.
We will show in Section 2.4 that these definitions capture

the respective notions of knowledge and belief appropriately.

2.3 Semantics

Definition 2 (cegs). A concurrent epistemic game struc-
ture is a tuple M = 〈Agt, St, Π, π, Act, d, o,∼1, . . . ,∼k〉, with:
a nonempty finite set of all agents Agt = {1, ..., k}, a nonempty
set of states St, a set of atomic propositions Π, a valuation
of propositions π : St → 2Π, and a nonempty finite set of
atomic actions Act. ∼1, ...,∼k⊆ St×St are epistemic equiv-
alence relations; q ∼a q′ means that, while the system is in
state q, agent a cannot determine whether it is in q or q′.
Function d : Agt × St → 2Act defines nonempty sets of ac-
tions available to agents at each state, with d(a, q) = d(a, q′)
for q ∼a q′. Finally, o is a (deterministic) transition func-
tion that assigns the outcome state q′ = o(q, α1, . . . , αk) to
state q and a tuple of actions 〈α1, . . . , αk〉, αi ∈ d(i, q), that
can be executed by Agt in q.

Remark 1. Relations ∼E
A, ∼C

A and ∼D
A , used to model

group epistemics, are derived from the individual relations
of agents from A. First, ∼E

A is the union of relations ∼a,
a ∈ A. Next, ∼C

A is defined as the transitive closure of ∼E
A.

Finally, ∼D
A is the intersection of all the ∼a, a ∈ A.

A strategy sa of agent a is a conditional plan that specifies
what a is going to do for every possible situation: sa : St →
Act such that sa(q) ∈ d(a, q). A collective strategy sA for a
group of agents A is a tuple of strategies, one per agent from
A. Strategy sa is uniform iff q ∼a q′ implies sa(q) = sa(q′);
a collective strategy is uniform iff it consists of only uniform
individual strategies. We denote the set of uniform strategies
of agent a by Σa; the set of uniform collective strategies of
team A is given by ΣA = ×a∈AΣa, and the set of all uniform
strategy profiles by Σ = ΣAgt.

Definition 3 (cegsp, plausibility model). A concur-
rent epistemic game structure with plausibility is given by
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M = 〈Agt, St, Π, π, Act, d, o,∼1, . . . ,∼k, Υ, Rgt, Ω, [[·]]〉, where
〈Agt, St, Π, π, Act, d, o,∼1, . . . ,∼k〉 is a cegs, Υ ⊆ Σ is
a set of plausible strategy profiles (called plausibility set),
Rgt ⊆ Agt is a set of rational agents (i.e., the agents to
whom the plausibility assumption will apply), Ω is a set of
plausibility terms, and [[·]] : Ω × 2St → Σ is a plausibility
mapping that provides denotation of the terms.2 We refer
to (Υ, Rgt) as the plausibility model of M . When necessary,
we write XM to denote the element X of model M .

Note that imposing strategic restrictions on a subset Rgt
of agents can be desirable due to several reasons. It might,
for example, be the case that only information about the
proponents’ play is available; hence, assuming plausible be-
havior of the opponents is neither sensible nor justified. Or,
even simpler, a group of (simple minded) agents might be
known not to behave rationally.

Consider now formula 〈〈A〉〉γ: The team A looks for a
strategy that brings about γ, but the members of the team
who are also in Rgt can only choose plausible strategies. The
same applies to A’s opponents that are contained in Rgt.

Definition 4 (Plausibility of strategies). Let sA|B
be the (A ∩ B)’s substrategy of sA, and Υ|B = {sB ∈ ΣB |
∃s ∈ Υ s|B = sB}. We say that sA is plausible iff Rgt’s
substrategy in sA is part of some strategy profile in Υ, i.e.,
if sA|A∩Rgt ∈ Υ|A∩Rgt .

By Σ∗ we denote the set of all plausible strategy profiles
in the model. That is, Σ∗ = {s ∈ Σ | s|Rgt ∈ Υ|Rgt}. Note
that sA is plausible iff sA ∈ Σ∗|A.

A path λ = q0q1 · · · ∈ Stω is an infinite sequence of states
such that there is a transition between each qi, qi+1. By
λ[i] = qi we denote the i-th state of λ. Λ denotes all paths
in the model, and Λ(q) the set of all paths starting in q.

Definition 5 (Plausible outcome paths). The plau-
sible outcome, out(q, sA), of strategy sA from state q is de-
fined as the set of paths (starting from q) which can occur
when only plausible strategy profiles can be played and agents
in A follow sA; that is, out(q, sA) = {λ ∈ Λ(q) | ∃t ∈
Σ∗ t|A = sA and out(q, t) = {λ}}

Now we define the notion of formula ϕ being satisfied by a
(non-empty) set of states Q in model M , written M, Q |= ϕ.
We will also write M, q |= ϕ as a shorthand for M, {q} |= ϕ.
Note that it is the latter notion of satisfaction (in single
states) that we are ultimately interested in – but it is defined
in terms of the (more general) satisfaction in sets of states.
Let img(q,R) be the image of state q with respect to binary
relation R, i.e., the set of all states q′ such that qRq′. More-
over, we use out(Q, sA) as a shorthand for

S

q∈Q out(q, sA),

and img(Q,R) as a shorthand for
S

q∈Q img(q,R). The se-
mantics is given through the following clauses.

M, Q |= p iff p ∈ π(q) for every q ∈ Q;

M, Q |= ¬ϕ iff M, Q �|= ϕ;

M, Q |= ϕ ∧ ψ iff M, Q |= ϕ and M, Q |= ψ;

M, Q |= 〈〈A〉〉 �ϕ iff there exists sA ∈ Σ∗|A such that, for
every λ ∈ out(Q, sA), we have that M, {λ[1]} |= ϕ;

2In this section, the denotation of such terms is fixed; in
Section 4 we present a more flexible version.

M, Q |= 〈〈A〉〉�ϕ iff there exists sA ∈ Σ∗|A such that, for
every λ ∈ out(Q, sA) and i ≥ 0, we have M, {λ[i]} |= ϕ;

M, Q |= 〈〈A〉〉ϕU ψ iff there exists sA ∈ Σ∗|A such that, for
every λ ∈ out(Q, sA), there is an i ≥ 0 for which
M, {λ[i]} |= ψ and M, {λ[j]} |= ϕ for every 0 ≤ j < i.

M, Q |= K̂WAϕ iff M, img(Q,∼K
A) |= ϕ (where K̂ = C, E, D

and K = C, E, D, respectively).

M, Q |= PlA ϕ iff M ′, Q |= ϕ, where the new model M ′ is
equal to M but the new set RgtM′ of rational agents
in M ′ is set to A.

M, Q |= (set-pl ω)ϕ iff M ′, Q |= ϕ where M ′ is equal to M

with ΥM′ set to [[ω]]QM .

M, Q |= (refn-pl ω)ϕ iff M ′, Q |= ϕ where M ′ is equal to

M with ΥM′ set to ΥM ∩ [[ω]]QM .

Like in csl, we use two notions of validity, weak and
strong, depending on whether formulae are evaluated with
respect to single states or sets of states.

Definition 6 (Validity). We say that ϕ is valid if
M, q |= ϕ for all cegsp’s M with plausibility model (Σ, ∅)
(i.e. all strategies are assumed to be plausible and no agent
plays plausibly yet) and all states q ∈ StM .

In addition to that, we say that ϕ is strongly valid if
M, Q |= ϕ for all cegsp’s M and all sets of states Q ⊆ StM .

Note that strong validity is interpreted in all models and
not only in those with plausibility model (Σ, ∅). This stronger
notion is necessary for interchangeability of (sub)formulae.
The following results are straightforward.

Proposition 2. Strong validity implies validity.

Proposition 3. If ϕ1 ↔ ϕ2 is strongly valid, and ψ′ is
obtained from ψ through replacing an occurrence of ϕ1 by
ϕ2, then M, Q |= ψ iff M, Q |= ψ′.

We also say that ϕ is satisfiable if M, q |= ϕ for some
cegsp with plausibility model (Σ, ∅).

2.4 Interpretation of Derived Operators
In this section we motivate the logic’s epistemic and dox-

astic operators. We especially show that the syntactic defi-
nitions for the derived knowledge and belief operators have
an intuitive semantics.

2.4.1 Knowledge
The concept behind knowledge is very simple: It is about

everything which is “physically” possible, i.e., all behaviors
are taken into account (not only the plausible ones). In par-
ticular this means that, once a knowledge operator occurs,
the set of rational agents in the plausibility model becomes
void, indicating that no agent is assumed to play rationally.

2.4.2 Weakly and Strongly Rational Beliefs
Constructive weak beliefs (cwb) (“common belief”, “dis-

tributed belief”, and “mutual belief”) are primitive opera-
tors in our logic. All other belief/knowledge operators are
derived from cwb and plausibility. In this section, we mainly
discuss individual knowledge and beliefs, but the analysis
extends to collective attitudes in a straightforward way.

Let us for example consider the individual cwb operator
Waϕ, with the following reading: Agent a has constructive
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weak belief in ϕ iff ϕ holds in all states that a considers
possible, where all agents behave according to the currently
specified plausibility model (Υ, A). That is, agents in A
are assumed to play as specified in Υ. It is important to
note that weakly rational beliefs restrict only the behavior
of the agents specified in the current plausibility model (i.e.
A). This is the difference between weak and strong beliefs –
the latter assume plausible behavior of all the agents. This
is why we call such beliefs strongly rational, as it restricts
the behavior of the system in a more rigorous way due to
stronger rationality assumptions.

Using rationality assumptions to define beliefs makes them
rather specific. They differ from most “standard” concepts
of belief in two main respects. Firstly, our notion of beliefs is
focused on behavior and abilities of agents. When no action
is considered, all epistemic and doxastic notions coincide.

Proposition 4. Let ϕ be a propositional formula. Then,
Waϕ ↔ Belaϕ ↔ Kaϕ is strongly valid.

Secondly, rational beliefs are about restricting the expected
behavior due to rationality assumptions: Irrational behav-
iors are simply disregarded. To strengthen this important
point consider the following statements:

(i) Ann (a) knows how Bill (b) can commit suicide (which
can be formalized as Ka〈〈b〉〉�suicide);

(ii) Ann constructively believes that Bill can commit sui-
cide (which we tentatively formalize as Bela〈〈b〉〉�suicide).

In the usual treatment of beliefs, statement (i) should im-
ply statement (ii), but this does not apply to rational beliefs.
That is because, typically, beliefs and knowledge are both
about “hard facts”. Thus, if a knows some fact to be true,
she should also include it in her belief base. On the other
hand, our reading of Bela〈〈b〉〉�suicide is given as follows: If
all agents are constrained to act rationally then Ann knows
a strategy for Bill by which he can commit suicide. How-
ever, it is natural to assume that no rational entity would
commit suicide.3 Hence, Bill’s ability to commit suicide is
out of question if we assume him to act rationally. Such an
irrational behavior is just unthinkable and thus disregarded
by Ann! While she knows how Bob can commit suicide in
general, she has no plausible recipe for Bob to do that.

A similar analysis can be conducted for standard (i.e.,
non-constructive) beliefs. Consider the following variants of
(i) and (ii):

(i’) Ann knows that Bill has some way of committing sui-
cide (Ka〈〈b〉〉�suicide);

(ii’) Ann believes, taking only rational behavior of all agents
into account (in particular of Bill), that Bill has the
ability to commit suicide (Bela〈〈b〉〉�suicide).

Like before, (i’) does not imply (ii’). While Ann knows that
Bill“physically”has some way of killing himself, by assuming
him to be rational she disregards the possibility. Bob’s as-
sumed rationality constrains his choices in Ann’s view. This
shows that in our logic knowing ϕ does not imply rational
beliefs in ϕ. We will justify the intuition on a more concrete
example.

3This assumption is given in the plausibility model; it can
be any assumption the designer would like to impose on the
agents.

q0 q1 suicide
(nop, jump)

(nop, nop) (nop, nop)

Figure 1: Simple cegsp.

Example 1. There are two agents 1 (Ann) and 2 (Bill).
Agent 2 has the ability to jump from a building and com-
mit suicide. However, agent 1 disregards this possibility and
considers it rational that 2 will not jump. The correspond-
ing cegsp is shown in Figure 1 where all different states are
distinguishable from each other; the set of plausible strategy
profiles consists of the single profile s in which both agents
play action nop, i.e., they do nothing (in particular, we
want to impose that Bill does not jump). Hence, we have
M, q0 |= K1〈〈2〉〉 �suicide but M, q0 �|= Bel1〈〈2〉〉 �suicide.

The following result, in line with [2], is immediate:

Theorem 5. In general, standard (resp. constructive)
knowledge does not imply standard (resp. constructive) ra-
tional belief. That is, formulae Kaϕ∧¬Belaϕ, Kaϕ∧¬Waϕ,
Kaϕ ∧ ¬Belaϕ, Kaϕ ∧ ¬Waϕ are satisfiable.

2.4.3 Non-Constructive Knowledge and Beliefs
In this section, we have a closer look at the standard (non-

constructive) epistemic and doxastic operators. We mainly
focus on strong beliefs; the cases for knowledge and weak
beliefs are given analogously.

The non-constructive versions of distributed, common, and
everybody belief are based on a specific construction involv-
ing the “until” operator. For example, the non-constructive
belief of agent a in ϕ, Belaϕ, is defined as a’s constructive
belief in the ability of the empty coalition to enforce ϕ until
ϕ. In [7] it was already shown that this definition captures
the right notion; we recall the intuition here.

The cooperation modality 〈〈∅〉〉 ensures that the state for-
mula ϕ is evaluated independently in each indistinguishable
state in Q (thus getting rid of its constructive flavour). How-
ever, a cooperation modality must be followed directly by a
path formula, and ϕ is a state formula. The trick is to use
ϕU ϕ instead, which ensures that ϕ is true in the initial
state of the path. Thus, a believes in ϕ iff Plϕ is indepen-
dently true in every indistinguishable state. The following
proposition (analogous to [7, Theorem 46]) states that all
non-constructive operators match their intended intuitions.

Proposition 6. Let M be a cegsp, q ∈ StM , and ϕ be a
cslp formula. Then the following holds, where K = C, E, D,
respectively:

1. M, Q |= KWAϕ iff ΥM �= ∅ and M, q |= ϕ for all
q ∈ img(Q,∼K

A);

2. M, Q |= KBelAϕ iff M, q |= Plϕ for all q ∈ img(Q,∼K
A);

3. M, Q |= KAϕ iff M, q |= Phϕ for all q ∈ img(Q,∼K
A).

3. PROPERTIES OF CSLP
In this section, we examine the relationship between plau-

sibility, knowledge and beliefs, and discuss the standard ax-
ioms about epistemic and doxastic concepts.
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3.1 Plausibility, Knowledge and Beliefs
Firstly, we observe that knowledge is commutative with

Ph and belief with Pl , which is a technically important
property.

Proposition 7. Let ϕ be a cslp formula. Then, we have
that PhKaϕ ↔ KaPhϕ and PlBelaϕ ↔ BelaPl are strongly
valid.

From the definition of knowledge an belief it follows that
a sequence of such operators collapses to the final operator
in the sequence.

Proposition 8. Let a ∈ Agt, ϕ be a cslp formula, and
X, Y be sequences of belief/knowledge operators; i.e. X, Y ∈
{Bela, Ka}∗. Then the following formulae are strongly valid:

(i) XBelaϕ ↔ Y Belaϕ (ii) XKaϕ ↔ Y Kaϕ

In particular, we have that the following formulae are
strongly valid: (1) KaBelaϕ ↔ Belaϕ: Agent a knows that
he believes ϕ iff he believes ϕ; and (2) BelaKaϕ ↔ Kaϕ:
Agent a believes that he knows ϕ iff he knows ϕ.

Proposition 9. Let the premises be as in Proposition 8.
Then, the following formulae are not valid: (i) XBelaϕ ↔
Y Kaϕ; (ii) Belaϕ → BelaKaϕ; (iii) Belaϕ → Kaϕ.

Proposition 9 says in particular that (ii) an agent who
has rational belief in ϕ does not necessarily believe that he
also knows ϕ; and (iii) an agent who believes in ϕ does not
necessarily know ϕ. Indeed, both formulae should not hold
in a logics of knowledge and belief.

Our definitions of epistemic and doxastic operators from
Section 2.2 strongly suggest that the underlying concepts
are related. Let us consider formula KaPl Bϕ: Agent a has
constructive knowledge in ϕ if agents in B behave rationally.
This sounds quite similar to beliefs which is formally shown
below.

Proposition 10. Pl AKaPl Aϕ ↔ Pl AWaϕ is strongly
valid. We also have that Kaϕ ↔ Waϕ is valid (but not
strongly valid).

Finally, we conclude that rational beliefs and knowledge
can also be defined in terms of each other.

Theorem 11. Belaϕ ↔ KaPlϕ and Kaϕ ↔ BelaPhϕ
are strongly valid.

That is, believing in ϕ is knowing that ϕ plausibly holds,
and knowing that ϕ is believing that ϕ is the case in all
physically possible plays.

3.2 Axiomatic Properties
In this section we review the well-known KDT45 axioms.

For modality O these axioms are given as follows:
(KO) O(ϕ → ψ) → (Oϕ → Oψ) (DO) Oϕ → ¬O¬ϕ
(TO) Oϕ → ϕ (4O) Oϕ → OOϕ
(5O) ¬Oϕ → O¬Oϕ

We say, for instance, that O is an K4 modality if axioms KO

and 4O are strongly valid. The following result is obtained
in a way analogous to [7, Theorem 37].

Theorem 12 (Weak beliefs: KD45). Wa (standard
weak beliefs) and Wa (constructive weak beliefs) are KD45
modalities. Axiom T is not valid for both notions of weak
beliefs.

Remark 13. Despite the similarities to [2], axiom D was
not strongly valid for beliefs in ctlkp because the belief op-
erator directly referred to plausible paths. Hence, if the set
of paths was empty some formulae were trivially true (Belϕ)
and others are trivially false (¬Belϕ). In cslp the notions
of belief and plausibility are more modular.

As knowledge and strong beliefs are special kinds of weak
beliefs, both operators have to satisfy the same axioms as
the weak belief operator. It just remains to check whether
axiom T holds for knowledge or strong beliefs. However,
for the same reason as in pure csl this axiom does usually
not hold; we refer to [7] for a rigorous discussion of this
issue – including ways how axiom T can be restored for
knowledge. The problem that T is not true for knowledge
(what is usually assumed to be a sensible requirement) is due
to the definition of negation in the non-standard semantics
defined wrt sets of states.

Theorem 14 (Strong beliefs: KD45). Standard strong
beliefs Bela and constructive strong beliefs Bela are KD45
modalities. Axiom T is not valid for both notions of beliefs.

Theorem 15 (Knowledge: KD45). Standard knowl-
edge Ka and constructive knowledge Ka are KD45 modali-
ties. Axiom T is not valid for both notions of knowledge.

Note that if we consider a formula ϕ which does not con-
tain any constructive operators then the following holds.

Theorem 16. Let L consist of all cslp formulae that
contain no constructive operators. Then:

1. Ka is a KD45 modality in L. Axiom TKa is valid (but
not strongly valid), and Ph (Kaϕ → ϕ) is strongly valid
in L.

2. Bela is a KD45 modality and Pl (Belaϕ → ϕ) is strongly
valid in L.

We observe that the validities Ph (Kaϕ → ϕ) and Pl (Belaϕ →
ϕ) are very similar to the truth axiom T.

3.3 Relationship to Existing Logics
In this section, we compare cslp with several relevant

logics and show their formal relationships. To this end, we
define the notion of embedding. Logic L1 embeds logic L2

iff there is a translation tr of L2 formulae into formulae of
L1, and a transformation TR of L2 models into models of
L1, such that M, q |=L2 ϕ iff TR(M), q |=L1 tr(ϕ) for every
pointed model M, q and formula ϕ of L2.

The following theorem is straightforward from the defini-
tion of the logic.

Theorem 17. cslp embeds atl, atlp, and csl.

It is easy to see that Wa is even a KDT45 modality for a
sublanguage of cslp and that this sublanguage can embed
standard epistemic propositional logic.

Proposition 18. cslp embeds standard epistemic propo-
sitional logic.

The following result is not that obvious but follows from
Proposition 18 and [3, Proposition 5].
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Proposition 19. cslp embeds ctlkp in the class of epis-
temic Kripke structures.

Remark 20. In [7] and [3] it was shown that csl and
atlp embed several other logics, e.g., atel [11], atli [8],
and glp [13]. Due to Theorem 17 all these logics are also
embeddable in cslp.

4. FLEXIBLE SPECIFICATIONS
In [3] we showed that atlp can be used to reason about

temporal properties of rational play. In particular it was
shown that the logic allows to characterize game theoretic
solution concepts of perfect information games [9]. These
characterizations were then used to describe agents rational
behavior and impose the resulting rationality constraints on
them. Here we show that cslp can be used for the same
purpose in the more general case of imperfect information
games (iig). A natural question is how solution concepts for
both game-types differ?

Actually, they do not differ much. For instance, a Nash
equilibrium is a strategy profile from which no agent can
deviate to obtain a better payoff, for both the perfect and
imperfect information case. However, only uniform strate-
gies are considered for iig. Moreover, we require the agent
to know/identify a strategy successful in all states indistin-
guishable for him.

Before we present how solution concepts can be described
in Section 4.2 we need to pave the way for it: cslp is not
yet expressive enough to describe strategies in the object
language, only predefined plausibility terms are available.

4.1 Nesting Formulae in CSLP
In this section we present L1

CSLP which extends LCSLP so
that plausibility terms are constructed from LCSLP formu-
lae.4 In the following we proceed in an analogous way to [3].
The extended plausibility terms of L1

CSLP have a structure
similar to σ1.D(σ1). Such a term selects all strategy pro-
files s1 (referred to by the strategic variable σ1) that sat-
isfy a property D which depends on a given model, set of
states, and σ1. Let us be more precise about the structure of
such properties. We allow them to be quantified LCSLP for-
mulae, e.g., D(σ1, . . . , σn) = ∀σ2∃σ3 . . . ∀σnϕ(σ1, . . . , σn),
where the quantification takes places over strategy profiles
which can be used inside ϕ in the same way as basic plau-
sibility terms would be used. The variable σ1 takes on a
specific role; it collects the “good” strategy profiles.

Before we formally define the language we need one more
notation. Solution concepts often require to combine strate-
gies or focus on substrategies. For example, given a term
ωNE (describing Nash equilibria) and a term ωPO (describing
Pareto optimal strategies) we can use 〈ωNE, ωPO〉 to refer to
all profiles in which agent 1 plays his part of an Nash equilib-
rium and agent 2 plays a Pareto optimal strategy. Likewise,
ωNE[1] refers to the strategy profiles in which 1’s substrategy
is a part of some Nash equilibrium.

Formally, given a non-empty set X we say that y is a
strategic combination of X if it is generated by the following
grammar: y ::= x | 〈y, . . . , y〉 | y[A] where x ∈ X, 〈y, . . . , y〉
is a vector of length |Agt|, and A ⊆ Agt. The set of strategic
combinations over X is defined by T (X). It is easy to see

4In order to give a brief presentation we do not allow“basic”
plausibility terms anymore.

that operator T is idempotent (T (X) = T (T (X))). Below,
we define the language L1

CSLP.

Definition 7 (L1
CSLP). Let Agt be a set of agents, Π

a set of propositions, and Vars a set of strategic variables
(with typical element σ). The logic L1

CSLP(Agt, Π,Vars) is
defined as LCSLP(Agt, Π, T (Ω1)) where Ω1 is given by

{σ1.(Q2σ2) . . . (Qnσn)ϕ | n ∈ N, ∀i (1 ≤ i ≤ n ⇒ σi ∈ Vars,

Qi ∈ {∀, ∃}, ϕ ∈ LCSLP(Agt, Π, T ({σ1, . . . , σn}))) }.

The semantics of L1
CSLP formulae is analogously defined

as for the base language but instead of the basic plausibility

mapping [[·]], the extended plausibility mapping c[[·]]M is used,
defined as follows:

1. If ω ∈ Ω then c[[ω]]
Q

M = [[ω]]QM ;

2. If ω = ω′[A] then c[[ω]]
Q

M = {s ∈ Σ | ∃s′ ∈ d[[ω′]]
Q

M s|A = s′|A};

3. If ω = 〈ω1, . . . ωk〉 then c[[ω]]
Q

M = {s ∈ Σ | ∃t1 ∈
d[[ω1]]

Q

M , . . . , ∃tk ∈ d[[ωk]]
Q

M∀i = 1, ..., k s|ai = ti|ai)};

4. If ω = σ1.(Q2σ2) . . . (Qnσn)ϕ then c[[ω]]
Q

M = {s1 ∈ Σ |
Q2s2 ∈ Σ, . . . , Qnsn ∈ Σ (Ms1,...,sn , q |= ϕ)}, where
Ms1,...,sn is equal to M except that we fix ΥMs1,...,sn =
Σ, ΩMs1,...,sn = ΩM ∪ {σ1, . . . , σn}, [[σi]]

Q
Ms1,...,sn =

{si}, and [[ω]]QMs1,...,sn = [[ω]]QM for all ω �= σi, 1 ≤
i ≤ n, and Q ⊆ StM . That is, the denotation of σi in
Ms1,...,sn is set to strategy profile si.

An example L1
CSLP formula is

(set-pl σ.〈〈∅〉〉�(Ph 〈〈Agt〉〉 �alive → (set-pl σ)Pl 〈〈∅〉〉 �alive))
¬Bela〈〈b〉〉�suicide: Assuming that rational agents avoid death
whenever they can, it is not rational of Ann to believe that
Bob can commit suicide.

Remark 21. The nestings can be increased step by step
which results in a hierarchy of logics, Lk

CSLP (k = 1, 2, . . . )
as in [3].

4.2 Solution Concepts under Uncertainty
In this section we characterize solution concepts for imper-

fect information games in L1
CSLP. Before we do that, how-

ever, we need some way to evaluate different strategies. In
game theory real values (payoffs) or preference relations are
used to define the outcome of a given strategy. Here, we fol-
low the approach from [3] which equips agents with winning
criteria 
η = 〈η1, . . . , ηk〉 (one per agent) where k = |Agt|.
Each criterion ηa of agent a is a temporal formula. Intu-
itively, a given strategy profile is successful for an agent a iff
the winning criterion is fulfilled on all resulting paths start-
ing from any indistinguishable state given the strategy pro-
file. This requirement is motivated by the fact that an agent
does not know whether the system is in q or q′ provided that
q and q′ are indistinguishable for him. So, he should play a
strategy which is “good” in both states to ensure success.

Definition 8 (From cegsp To NF Game). Let M be
a cegsp, q ∈ StM , and 
η be a vector of winning criteria.

We define N (M,−→η , q), the normal form game associated
with M , −→η , and q, as the normal form game 〈Agt,S1, . . . ,Sk, μ〉,
where the set Sa of a’s strategies is given by Σa (a’s uniform
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strategies) for each a ∈ Agt, and the payoff function is de-
fined as follows:

μa(a1, . . . , ak) =

8

>

<

>

:

1 if M, λ |= ηa

for all λ ∈ out(img(q,∼a), 〈a1, . . . , ak〉),
0 else

To give a clear meaning to solution concepts in a cegsp,
we relate them to the associated normal form game. The
first solution concept we will define is a best-response strategy
for iig. Given a strategy profile s−a := (s1, . . . ,
sa−1, sa+1, . . . , sk) where k = |Agt| a strategy sa is said to
be a best response to s−a if there is no better strategy for
agent a given s−a. Now, s is a best response profile wrt a if
s|a is a best response against s|Agt\{a}. According to [3] σ
is a best response profile for perfect information games wrt
a and 
γ in M, q if M, q |= (set-pl σAgt\{a}])Pl

`

〈〈a〉〉ηa →
(set-pl σ)〈〈∅〉〉ηa

´

. It is read as follows: If agent a has any
strategy to enforce ηa against σ[Agt \ {a}] then his strategy
given in σ should enforce ηa as well.

What do we have to modify to make it suitable for imper-
fect information games? Firstly, we have to ensure that the
strategy σ is uniform, and indeed only uniform strategies are
taken into account in the semantics of cslp. Secondly, since
the agent might not be aware of the real state of the system
the described strategy should have its desired characteristics
in every indistinguishable state. The agent should be able
to identify the strategy; the key motivation behind csl. For
this purpose cslp provides the constructive belief operators;
recall that Wa〈〈a〉〉 means that a has a single strategy suc-
cessful in all indistinguishable states. To ensure this second
point we just have to couple strategic operators with con-
structive operators. So we obtain the following description
of a best response strategy for iig:

BR�η
a(σ) ≡
(set-pl σ[Agt\{a}])Pl (Wa〈〈a〉〉ηa → (set-pl σ)Wa〈〈∅〉〉ηa).

Other solution concepts characterized in [3] can be adapted
to iig’s following the same scheme, e.g.:

Nash equilibrium (NE): NE�η(σ) ≡
V

i∈Agt BR�η
i (σ);

Subgame perfect NE: SPN �η(σ) ≡ EWAgt〈〈∅〉〉� NE�η(σ);
Pareto optimal strategy (PO):

PO�η(σ) ≡ ∀σ′ Pl
“

^

a∈Agt

((set-pl σ′)Wa〈〈∅〉〉ηa → (set-pl σ)Wa〈〈∅〉〉ηa) ∨

_

a∈Agt

((set-pl σ)Wa〈〈∅〉〉ηa ∧ ¬(set-pl σ′)Wa〈〈∅〉〉ηa

”

.

The following result shows that these concepts match the
underlying intuitions.

Theorem 22. Let M be a cegsp, q ∈ StM , 
η a vector of
winning criteria, and N := N (M,−→η , q). Then:

1. The set of ne strategies in N is given by ̂[[σ.NE�η(σ)]]
{q}
M

2. The set of po strategies in N is given by ̂[[σ.PO�η(σ)]]
{q}
M

3. Let Q′ collect the states that any agent from A consid-
ers possible, i.e., img({q},∼E

Agt)), plus all states reach-
able from them by (a sequence of) temporal transitions.

Then, ̂[[σ.SPN �η(σ)]]
{q}
M is equal to

T

q′∈Q′
̂[[σ.NE�η(σ)]]

{q′}
M .

q0
t q1

h

q2win q3lose

1

tt
, t

h,
hh

hh, h
t, t

t ht

th 1\2 h t

h 1, 1 0, 1
t 0, 0 1, 1

Figure 2: Simple cegsp.

Example 2. Consider the cegsp given in Figure 2. There
are two agents, 1 and 2, and a coin which initially shows
tail (q0) or head (q1); agent 1 cannot distinguish between
them. Now, both agents win if 1 guesses the right side of
the coin or if both agents agree on one side (regardless of
whether it is the right one). For instance, the tuple th de-
notes that 1 says tail and 2 head. Moreover, we assume that
both agents have the winning criterion �win. The associ-
ated NF game wrt q0 is also given in Figure 2. Now we have

that ̂[[σ.NE�η(σ)]]
{q}
M = {hh, tt}: Only if both agents agree on

the same side, winning is guaranteed.

5. MODEL CHECKING RATIONAL PLAY

UNDER IMPERFECT INFORMATION
In this section we discuss the model checking complexity

of LCSLP and L1
CSLP. Given a formula ϕ, a model M , and a

set of states Q ⊆ StM the associated model checking prob-
lem is to determine whether M, Q |= ϕ holds or not. In
the following we use l to refer to the length of ϕ and m to
denote the number of transitions in M . We only consider a
restricted class of models in which the check for plausibility
of a strategy profile can be done in polynomial time (wrt l
and m) by a non-deterministic Turing machine. In order to
conduct a sensible analysis such an assumption is necessary.
To this end, we adapt an important notion from [3].

Definition 9 (Well-Behaved cegsp). A cegsp M is
called well-behaved if, and only if, (1) ΥM = Σ: all the
strategy profiles are plausible in M ; and (2) there is an al-

gorithm which determines whether s ∈ [[ω]]QM for every set
Q ⊆ StM , strategy profile s ∈ Σ, and plausibility term ω ∈ Ω
in nondeterministic polynomial time wrt the length of ω and
the number of transitions in M .

We begin by reviewing the existing results for csl and
atlp separately. The complexity results for cslp follow in a
natural way. In [7] it was shown that csl model checking is
ΔP

2 -complete,5 the hard cases being formulae 〈〈A〉〉�ϕ and
〈〈A〉〉ϕ1 U ϕ2. The formulae require existence of a single uni-
form strategy which is successful in all states of Q. In the
algorithm from [7], the strategy is guessed by the oracle and
then verified in polynomial time (see further). Nested coop-
eration modalities are model-checked recursively (bottom-
up) which puts the algorithm indeed in ΔP

2 .
We also recall from [3] that atlp model checking is ΔP

3 =

PNPNP

-complete. The algorithm for checking the hard cases
(〈〈A〉〉�ϕ and 〈〈A〉〉ϕ1 U ϕ2) is similar: Firstly, a plausible
strategy of A is guessed (first NP-oracle call) and verified

5ΔP
2 = PNP is the class of problems that can be solved

in polynomial time by a deterministic Turing machine that
makes adaptive calls to an NP oracle.
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against all plausible strategies of the opponents (second NP-
oracle call, the“worst”response of the opponents is guessed).
Note that, as soon as the relevant strategy (or strategy pro-
file) s is fixed, the remaining verification can be done in
deterministic polynomial time: it is enough to “trim” the
model by deleting all transitions which cannot occur when
the agents follow s, and model check a ctl formula in the
trimmed model (which can be done in polynomial time [4]).

For LCSLP, we essentially use the atlp model checking
algorithm from [3] with an additional check for uniformity
of strategies. This does not influence the complexity. We
obtain the following result (we refer to [3, 7] for details).

Theorem 23. Model checking LCSLP in the class of well-
behaved cegsp’s is ΔP

3 -complete with respect to l and m.

Proof (Sketch). The hardness follows from the fact that
LATLP is ΔP

3 -complete and can be embedded in LCSLP (cf.
Proposition 17). For the inclusion in ΔP

3 , we sketch the al-
gorithm for M, Q |= 〈〈A〉〉�ϕ: (1) Model-check ϕ recursively
for each q ∈ St, and label the states for which M, q |= ϕ
with a new proposition p; (2) Guess a “good” plausible uni-
form strategy sA; (3) Guess a “bad” uniform plausible strat-
egy profile t such that t|A = sA; and (4) Return true if
Q ⊆ mcheckCTL(M ′, A �p) and false otherwise, where M ′

is the trimmed model of M wrt profile t.

In the previous section we showed how cslp can be used
to characterize incomplete information solution concepts.
However, for this reason we had to extend the language. An
obvious question arises: How much does the complexity in-
crease? The answer is quite appealing: The increase depends
on how much extra-expressiveness we actually use; and in
any case, we get some expressiveness for free! This can be
shown analogously to [3]; here, we just give a brief summary.
The model checking complexity can be completely charac-
terized in the number of quantifier alternations used in the
extended plausibility terms. If we have no quantifiers at all,
the resulting sublanguage is no more costly to verify than
the base version. Note that the quantifier-free sublanguage
of L1

CSLP is already sufficient to “plug in” important solution
concepts (e.g., Nash equilibria). For each additional quan-
tifier alternation (starting with a universal quantifier) the
complexity is pushed one level up in the polynomial hierar-
chy. For a more detailed discussion, cf. [3].

Theorem 24. Let L ⊆ L1
CSLP such that each sequence

of quantifiers starting with an universal one in any extended
plausibility term has at most i quantifier alternations. Then,
model checking formulae of L in the class of well-behaved
cegsp’s is in ΔP

3+i with respect to l and m.

Proof (Sketch). The extension of the base algorithm
discussed above is done in an analogous way to [3]. For
each quantifier alternation one has to guess a new strategy.
But the first existential quantified strategic variables can be
guessed together with the proponents and opponents strate-
gies; thus, no more oracle levels need to be added.

6. CONCLUSIONS
In this paper, we propose a logic which relates epistemic

and doxastic concepts in a specific way; more importantly,
it allows to reason about the outcome of rational play in
imperfect information games. In the logic, called ctlkp,

beliefs are defined on top of the primitive notions of plau-
sibility and indistinguishability. We analyze the relation-
ship between beliefs, knowledge, and rationality, and prove
in particular that rational beliefs form a KD45 modality.
cslp embeds both ctlkp and csl; thus, the combination of
knowledge, rationality, and strategic action turns out to be
strictly more expressive than each of the subsets.

Moreover, we show how some important solution con-
cepts can be characterized and used for reasoning about
imperfect information scenarios. Finally, we prove that the
model checking problem for the basic variant of cslp is ΔP

3 -
complete. That is, the complexity of model checking is only
slightly higher than for csl, and no worse than for atlp.
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